133 research outputs found

    Infections and Multiple Sclerosis: From the World to Sardinia, From Sardinia to the World

    Get PDF
    Multiple Sclerosis (MS) is an inflammatory disease of the central nervous system. Sardinia, an Italian island, is one of the areas with the highest global prevalence of MS. Genetic factors have been widely explored to explain this greater prevalence among some populations; the genetic makeup of the Sardinians appears to make them more likely to develop autoimmune diseases. A strong association between MS and some infections have been reported globally. The most robust evidence indicating the role of infections is MS development concerns the Epstein-Barr virus (EBV). Anti-EBV antibodies in patients once infected by EBV are associated with the development of MS years later. These features have also been noted in Sardinian patients with MS. Many groups have found an increased expression of the Human endogenous retroviruses (HERV) family in patients with MS. A role in pathogenesis, prognosis, and prediction of treatment response has been proposed for HERV. A European multi-centre study has shown that their presence was variable among populations, ranging from 59% to 100% of patients, with higher HERV expression noted in Sardinian patients with MS. The mycobacterium avium subspecies paratuberculosis (MAP) DNA and antibodies against MAP2694 protein were found to be associated with MS in Sardinian patients. More recently, this association has also been reported in Japanese patients with MS. In this study, we analysed the role of infectious factors in Sardinian patients with MS and compared it with the findings reported in other populations

    Brain Volume and Perception of Cognitive Impairment in People With Multiple Sclerosis and Their Caregivers

    Get PDF
    Background: Cognitive impairment (CI) is common in people with multiple sclerosis (pwMS). The assessment of CI is based on neuropsychological tests and accurate anamnesis, involving the patients and caregivers (CG). This study aimed to assess the complex interplay between self-perception of CI, objective CI and the brain atrophy of MS patients, also exploring the possible differences with CI evaluated by caregivers. Methods: Relapsing pwMS were enrolled in this study. Subjects underwent neuropsychological examination using the Brief Cognitive Assessment for Multiple Sclerosis (BICAMS) and evaluation of self-reported cognitive status using the patient-version of the Multiple Sclerosis Neuropsychological Questionnaire (p-MSNQ). Depression and anxiety were also evaluated using the Back Depression Inventory-version II (BDI-II) and Zung Anxiety Scale. Brain MRI images were acquired and brain volumes estimated. For each patient that was enrolled, we spoke to a caregiver and collected their perception of the patient's CI using the MSNQ- Caregiver version. Results: Ninety-five MS subjects with their caregivers were enrolled. CI was detected in 51 (53.7%) patients. We found a significant correlation (p < 0.001) between BICAMS T scores and lower whole brain (Rho = 0.51), gray matter (Rho = 0.54), cortical gray matter (Rho = 0.51) volumes and lower p-MSNQ (Rho = 0.31), and cg-MSNQ (Rho = 0.41) scores. Multivariate logistic regression showed that p-MSNQ is related to a patient's anxiety to evaluate by Zung Score (p < 0.001) while cg-MSNQ to patient's brain volume (p = 0.01). Conclusion: Our data confirm that neuropsychological evaluation results are related to the perception of CI and brain volume measures and highlight the importance of the caregiver's perception for cognitive assessment of pwMS

    Metabolomic Changes in Patients Affected by Multiple Sclerosis and Treated with Fingolimod

    Get PDF
    Current treatment for Multiple Sclerosis (MS) consists of a multidisciplinary approach including disease-modifying therapies. The response to treatment is heterogeneous, representing a crucial challenge in the classification of patients. Metabolomics is an innovative tool that can identifies biomarkers/predictors of treatment response. We aimed to evaluate plasma metabolic changes in a group of naĂŻve Relapsing-Remitting MS patients starting Fingolimod treatment, to find specific metabolomic features that predict the therapeutic response as well as the possible side effects. The study included 42 Relapsing-Remitting MS blood samples, of which 30 were classified as responders after two years of FINGO treatment, whereas 12 patients were Not-Responders. For fifteen patients, samples were collected at four time points: before starting the therapy; at six months after the initiation; at twelve months after; and at twenty-four months after initiation. The serum was analysed through Nuclear Magnetic Resonance and multivariate and univariate statistical analysis. Considering the single comparison between each time point, it was possible to identify a set of metabolites changing their concentrations based on the drug intake. FINGO influences aminoacidic and energy metabolisms and reduces oxidative stress and the activity of the immune system, both typical features of MS

    (1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis

    Get PDF
    OBJECTIVE: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis. METHODS: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by (1)H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated. RESULTS: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98). CONCLUSION: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of M

    Impact of hypercapnia on alveolar Na+-transport : Establishing a system for ENaC-protein detection

    Get PDF
    Acute respiratory distress syndrome is a life threatening condition triggered by a variety of pulmonary and extrapulmonary causes, that is characterized by pulmonary edema and subsequently impaired gas exchange. Due to lung protective ventilation strategies, its treatment is often associated with systemic accumulation of CO2, a condition termed permissive hypercapnia. Recent studies report a negative effect of CO2 on alveolar fluid clearance, a process mediated by its two key elements the Na+,K+-ATPase and epithelial Na+-channels (ENaCs). A reduced activity of the Na+,K+-ATPase during hypercapnia has already been demonstrated, but regulation of ENaC has never been directly linked to CO2. Many molecular signaling events that are activated during hypercapnia are known to regulate ENaC function, so the present study aimed to generate and subsequently apply techniques to investigate a possible contribution of ENaC to the reduction of alveolar epithelial fluid transport upon hypercapnia. ENaC function was studied in H441 cells by Ussing chamber experiments which revealed no significant regulation during short term hypercapnia, but a clear reduction of ENaC function during sustained hypercapnia. To identify the signaling mechanism on the molecular level, epitope-tagged human ENaC constructs for the &#945;-, &#946;- and &#947;-subunit were cloned and initially expressed in A549 cells. Exposition to hypercapnia up to 4 hours did not significantly reduce cell surface expression of the ENaC-subunits, but after 24 hours, a significant decrease of &#946;-ENaC was observed. Since the molecular sizes of &#945;- and &#947;-ENaC expressed in A549 cells were differing from previously published studies, transfection of ENaC was continued in other cells. H441 cells are commonly used for ENaC studies, so their transfection was established, yielding an efficiency of about 60 %. The molecular sizes of transfected ENaC subunits matched the pattern that was expected, but expression levels were evanescent and too low for further experiments. Since ENaC detection in these two cell lines remained problematic, a novel methodology was applied. Since the primary site of ENaC expression in the lung are epithelial cells, rat primary alveolar epithelial cells type II were used as recipients for ENaC plasmids. Non-viral transfection of ATII cells has been inefficient in the past, but during the present study a protocol was generated to efficiently deliver nucleic acids to exactly this cell type. ENaC expression was largely increased in ATII cells, compared to the cell lines used, indicating that established system might be extremely useful for further studies involving ENaC turnover. Thus, a new and highly relevant, non-viral transfection technique for primary alveolar epithelial type II cells was established, providing ground-breaking opportunities for future pulmonary research.Das Atemnotsyndrom des Erwachsenen ist eine lebensbedrohliche Erkrankung, ausgelöst durch eine Reihe von Faktoren, die direkt oder indirekt auf die Lunge einwirken . Charakteristisch für dieses Syndrom sind pulmonare Ödeme und daraus resultierend ein eingeschränkter Gasaustausch. Die daher benötigte künstliche Beatmung führt im Zuge von protektiven Beatmungsstrategien oft zu einer systemischen Anreicherung von CO2 (Hyperkapnie). Einige Studien zeigen, dass erhöhte CO2-Level den Flüssigkeitstransport der Lunge einschränken. Dieser aktive Prozess wird maßgeblich durch zwei Komponenten, die Na+,K+-ATPase und epitheliale Na+-Kanäle (ENaCs), kontrolliert. Eine Beeinträchtigung der Na+,K+-ATPase durch CO2 gezeigt, für ENaCs ist dies bislang nicht bekannt. Einige bekannte Regulatoren von ENaCs werden jedoch während Hyperkapnie aktiviert. Das Ziel der vorliegenden Arbeit war, Methoden zu etablieren und anzuwenden, die einen möglichen Einfluss von CO2 auf ENaC zeigen. Funktionelle Versuche wurden an H441-Zellen mit Ussing-Kammer-Messungen durchgeführt. Während akuter Hyperkapnie konnte keine signifikante Regulation von ENaC nachgewiesen werden, jedoch war die ENaC-Funktion bei anhaltender Hyperkapnie deutlich verringert. Um die Signalwege auf molekularer Ebene zu untersuchen, wurde die &#945;-, &#946;- und &#947;- Untereinheit des humanen ENaC kloniert, genetisch modifiziert und in A549 Zellen überexprimiert. Nach bis zu vierstündiger Hyperkapnie erfolgte keine Regulation von ENaC, jedoch wurde nach 24 Stunden eine deutlich verminderte Menge &#946;-ENaC in der Zellmembran nachgewiesen. Da die Größen von &#945;- und &#947;-ENaC von den bisher publizierten abwichen, wurden weitere Versuche in H441 Zellen durchgeführt. Die Transfektion dieser Zelllinie wurde etabliert und erreichte eine Effizienz von ungefähr 60 %. Die posttranslationale Regulation der &#945;- und &#947;-Untereinheiten, insbesondere die proteolytische Aktivierung funktionierten wie in der Literatur beschrieben, jedoch waren die Expressionslevel zu gering für weitere Versuche. In der Lunge werden ENaCs überwiegend in epithelialen Zellen exprimiert. Diese Zellen konnten bisher jedoch nicht effizient transfiziert werden, ohne Viren einzusetzen. In der vorliegenden Arbeit wurde jedoch eine effiziente Methode zur Transfektion von primären epithelialen Zellen der Ratte erarbeitet. Die Expression von transfizierten ENaC-Untereinheiten war in diesen Zellen deutlich erhöht, weswegen die Etablierung dieses Systems ausschlaggebend für weitere Versuche ist. Die vorliegende Arbeit beschreibt daher zum ersten Mal die nicht-virale, effiziente Transfektion von primären alveolaren Zellen und liefert damit ein bedeutendes neues Werkzeug für die Lungenforschung

    Clinical variability at the mild end of BRAT1-related spectrum: Evidence from two families with genotype–phenotype discordance

    Get PDF
    Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype-phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging. A third unrelated patient showed normal neurodevelopment, adolescence-onset seizures, and ataxia, shrunken cerebellum, and ultrastructural abnormalities on skin biopsy, representing the mildest form of NEDCAS hitherto described. Exome sequencing identified the c.638dup and the novel c.1395G&gt;A BRAT1 variants, the latter causing exon 10 skippings. The p53-MCL test revealed normal ATM kinase activity. Our findings broaden the allelic and clinical spectrum of BRAT1-related disease, which should be suspected in presence of nonprogressive cerebellar signs, even without a neurodevelopmental disorder

    Vitamin D responsive elements within the HLA-DRB1 promoter region in Sardinian multiple sclerosis associated alleles

    Get PDF
    Vitamin D response elements (VDREs) have been found in the promoter region of the MS-associated allele HLA-DRB1*15:01, suggesting that with low vitamin D availability VDREs are incapable of inducing *15:01 expression allowing in early life autoreactive T-cells to escape central thymic deletion. The Italian island of Sardinia exhibits a very high frequency of MS and high solar radiation exposure. We test the contribution of VDREs analysing the promoter region of the MS-associated DRB1 *04:05, *03:01, *13:01 and *15:01 and non-MS-associated *16:01, *01, *11, *07:01 alleles in a cohort of Sardinians (44 MS patients and 112 healthy subjects). Sequencing of the DRB1 promoter region revealed a homozygous canonical VDRE in all *15:01, *16:01, *11 and in 45/73 *03:01 and in heterozygous state in 28/73 *03:01 and all *01 alleles. A new mutated homozygous VDRE was found in all *13:03, *04:05 and *07:01 alleles. Functionality of mutated and canonical VDREs was assessed for its potential to modulate levels of DRB1 gene expression using an in vitro transactivation assay after stimulation with active vitamin D metabolite. Vitamin D failed to increase promoter activity of the *04:05 and *03:01 alleles carrying the new mutated VDRE, while the *16:01 and *03:01 alleles carrying the canonical VDRE sequence showed significantly increased transcriptional activity. The ability of VDR to bind the mutant VDRE in the DRB1 promoter was evaluated by EMSA. Efficient binding of VDR to the VDRE sequence found in the *16:01 and in the *15:01 allele reduced electrophoretic mobility when either an anti-VDR or an anti-RXR monoclonal antibody was added. Conversely, the Sardinian mutated VDRE sample showed very low affinity for the RXR/VDR heterodimer. These data seem to exclude a role of VDREs in the promoter region of the DRB1 gene in susceptibility to MS carried by DRB1* alleles in Sardinian patients

    Agenesis of the putamen and globus pallidus caused by recessive mutations in the homeobox gene GSX2

    Get PDF
    Basal ganglia are subcortical grey nuclei that play essential roles in controlling voluntary movements, cognition and emotion. While basal ganglia dysfunction is observed in many neurodegenerative or metabolic disorders, congenital malformations are rare. In particular, dysplastic basal ganglia are part of the malformative spectrum of tubulinopathies and X-linked lissencephaly with abnormal genitalia, but neurodevelopmental syndromes characterized by basal ganglia agenesis are not known to date. We ascertained two unrelated children (both female) presenting with spastic tetraparesis, severe generalized dystonia and intellectual impairment, sharing a unique brain malformation characterized by agenesis of putamina and globi pallidi, dysgenesis of the caudate nuclei, olfactory bulbs hypoplasia, and anomaly of the diencephalic-mesencephalic junction with abnormal corticospinal tract course. Whole-exome sequencing identified two novel homozygous variants, c.26C>A; p.(S9*) and c.752A>G; p.(Q251R) in the GSX2 gene, a member of the family of homeobox transcription factors, which are key regulators of embryonic development. GSX2 is highly expressed in neural progenitors of the lateral and median ganglionic eminences, two protrusions of the ventral telencephalon from which the basal ganglia and olfactory tubercles originate, where it promotes neurogenesis while negatively regulating oligodendrogenesis. The truncating variant resulted in complete loss of protein expression, while the missense variant affected a highly conserved residue of the homeobox domain, was consistently predicted as pathogenic by bioinformatic tools, resulted in reduced protein expression and caused impaired structural stability of the homeobox domain and weaker interaction with DNA according to molecular dynamic simulations. Moreover, the nuclear localization of the mutant protein in transfected cells was significantly reduced compared to the wild-type protein. Expression studies on both patients' fibroblasts demonstrated reduced expression of GSX2 itself, likely due to altered transcriptional self-regulation, as well as significant expression changes of related genes such as ASCL1 and PAX6. Whole transcriptome analysis revealed a global deregulation in genes implicated in apoptosis and immunity, two broad pathways known to be involved in brain development. This is the first report of the clinical phenotype and molecular basis associated to basal ganglia agenesis in humans
    • …
    corecore